

www.hilti.de Profis Anchor 2.2.4

Company: PROGRIN d.o.o. Specifier: Mitja ŽNIDARIČ

Specifier: Mitja ŽNIDARIC Address: Lackova ulica 23

Phone I Fax:

E-Mail: mitja@progrin.si

Page: Project:

Fastening Point:

Date:

Ograja ŠRC Radenci 1

9.2.2012

Specifier's comments:

1 Validation of fastenings for handrail applications in concrete

General data

Handrail construction

Handrail type Balcony handrail

Handrail application Installed on the top surface of the concrete

System multi-post system
Post distance 2800 [mm]
Height of handrail from concrete 1050 [mm]

Environment Outside/Influence of humidity

Cladding 100
Height above sea level (NN) 500,00 [m]
Building heigth from ground 10,00 [m]
Building width 10,00 [m]
Building depth 10,00 [m]
Windload zone Zene 2: Midland

For the design below, we refer to the following documents:

- DIN 1055-4/03.2005 Impact on civil construction windloads
- DIN 1055-1 Load assumptions for buildings dead loads
- DIN 18800-1, Edition 11.90 Steel buildings, calculation and construction
- Eurocode 1 basics for planning of structural framework
- German guideline for steel companies, Bundesverband Metall
- · ETB-Guideline Safe constructions for fall protection

Moreover, the following has to be taken into account:

- the proof of the steel construction is not part of this calculation and must be done separately.
- For cladded handrails outside buildings, windloads according to DIN 1055-4: 03-2005 dependent on location and building height have to be considered.
- The calculation will be done for a Middle post of a multi-post system.
- · The following loadcases are considered:
- horizontal load outwards
- horizontal load inwards
- wind suction outwards
- wind pressure inwards
- The results of loadcase horizontal load inwards are shown below.
- The result of loadcase horizontal load outwards is decisive.

Ograja ŠRC Radenci 1

Profis Anchor 2.2.4 www.hilti.de

Company: PROGRIN d.o.o. Specifier: Mitja ŽNIDARIČ Address: Lackova ulica 23

Phone I Fax:

E-Mail: mitja@progrin.si Page: Project:

Fastening Point:

9.2.2012

2 Handrail construction and input data

Basic input data

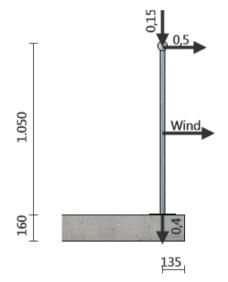
Horizontal load	0,500 [kN/m]
Dead load	0,400 [kN/m]
Vertical load	0.150 [kN/m]

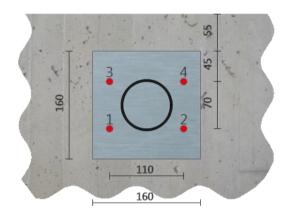
Loads acting on governing post

Date:

Horizontal load on post	F_{H}	= 1,400 [kN]
Dead load on post	F_{G}	= 1,120 [kN]
Wind load suction on post	F_{Ws}	= 2,102 [kN]
Wind load pressure on post	F_{Wd}	= 1,911 [kN]
Vertical load on post	F_A	= 0,420 [kN]

Influencing parameters


Lever arm horizontal load $e_{H} = 1050 [mm]$ $e_G = 0 [mm]$ Lever arm dead load $e_W = 525 [mm]$ Lever arm wind load e_A Lever arm vertical load = 0 [mm] Influencing distance of post = 2800 [mm]


Loadcase factors

Load case: horizontal load inwards S_d $= 0.9 * F_G - 1.5 * F_H$

 N_{Sd} $V_{y,Sd}$

 $= -0.9 * F_G$ $= -1.5 * F_H$ $= -0.9 * F_G * e_G + 1.5 * F_H * e_H$ $\dot{M_{x,Sd}}$ horizontal load outwards Relevant loadcase:

Ograja ŠRC Radenci 1

www.hilti.de Profis Anchor 2.2.4

Company: PROGRIN d.o.o. Specifier: Mitja ŽNIDARIČ

Specifier: Mitja ZNIDARIC Address: Lackova ulica 23

Phone I Fax:

E-Mail: mitja@progrin.si

Page: Project:

Date:

Fastening Point:

9.2.2012

3 Input data

Anchor type and size: HST-HCR M16

Effective embedment depth: $h_{ef} = 82 \text{ mm}, h_{nom} = 115 \text{ mm}$

Material: HCR

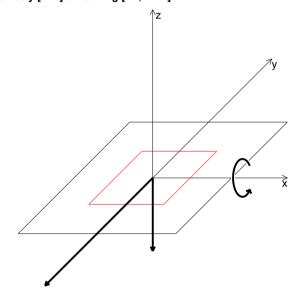
Approval No.: ETA 98/0001

Issued I Valid: 17.6.2011 | 19.2.2013

Proof: design method ETAG No. 001 Annex C(2010)

Stand-off installation: $e_b = 0 \text{ mm (no stand-off)}; t = 8 \text{ mm}$

Anchor plate: $l_x \times l_y \times t = 160 \text{ mm} \times 8 \text{ mm}$; (Recommended plate thickness: not calculated)


Profile: Pipe; $(L \times W \times T) = 76 \text{ mm } \times 76 \text{ mm } \times 3 \text{ mm}$

Base material: cracked concrete, C25/30, f_{cc} = 30,00 N/mm²; h = 160 mm

Reinforcement: No reinforcement or Reinforcement spacing >= 150 mm (any Ø) or >= 100 mm (Ø <= 10 mm)

with longitudinal edge reinforcement d >= 12

Geometry [mm] & Loading [kN, kNm]

Design loads

	Loading
N	1,008
V_{x}	0,000
V_{y}	2,100
M_{z}	0,000
M_x	2,205
M_{y}	0,000

Eccentricity (structural section) [mm]

 $e_x = 0; e_y = 0$

www.hilti.de

Page: 4

Company: PROGRIN d.o.o. Specifier: Mitja ŽNIDARIČ Address: Lackova ulica 23

Project: Fastening Point:

Date:

Ograja ŠRC Radenci 1

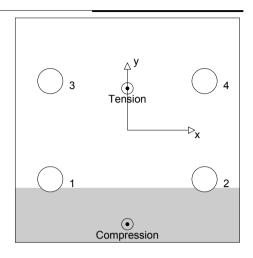
Profis Anchor 2.2.4

Phone I Fax: E-Mail:

nitja@progrin.si

9.2.2012

4 Load case/Resulting anchor forces


Load case: Design loads

Anchor reactions [kN]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	0,821	0,525	0,000	-0,525
2	0,821	0,525	0,000	-0,525
3	10,216	0,525	0,000	-0,525
4	10,216	0,525	0,000	-0,525

max. concrete compressive strain: 0,25 [%] max. concrete compressive stress: 7,42 [N/mm 2] resulting tension force in (x/y)=(0/30): 22,073 [kN] resulting compression force in (x/y)=(0/-67): 23,081 [kN]

5 Tension load (ETAG, Annex C, Section 5.2.2)

	Load [kN]	Capacity [kN]	Utilisation _{βN} [%]	Status
Steel failure*	10,216	56,333	19	OK
Pull-out failure*	10,216	18,257	56	OK
Concrete cone failure**	22,073	25,568	87	OK
Splitting failure**	22,073	25,568	87	OK

^{*} most unfavourable anchor **anchor group (anchors in tension)

5.1 Steel failure

$N_{Rk,s}$ [kN]	γM,s	$N_{Rd,s}$ [kN]	N _{Sd} [kN]
84,500	1.500	56.333	10.216

5.2 Pull-out failure

$N_{Rk,p}$ [kN]	Ψс	γм,р	$N_{Rd,p}$ [kN]	N _{Sd} [kN]
25,000	1,095	1,500	18,257	10,216

5.3 Concrete cone failure

A _{c,N} [mm ²]	A _{c,N} [mm ²] 60516	c _{cr,N} [mm] 123	s _{cr,N} [mm]			
e _{c1,N} [mm]	Ψec1,N	e _{c2,N} [mm]	Ψec2,N	Ψs,N	Ψre,N	k₁
0	1,000	30	0,805	0,944	1,000	7,200
N _{Rk,c} [kN]	γм,с	N _{Rd,c} [kN]	N _{Sd} [kN]			
29,283	1,500	25,568	22,073			

5.4 Splitting failure

A _{c,N} [mm ²]	$A_{c,N}^0$ [mm ²]	c _{cr,sp} [mm]	s _{cr,sp} [mm]	Ψh,sp		
104308	60516	123	246	1,000		
e _{c1,N} [mm]	Ψec1,N	e _{c2,N} [mm]	Ψec2,N	Ψs,N	Ψre,N	\mathbf{k}_1
0	1,000	30	0,805	0,944	1,000	7,200
$N_{Rk,c}^{0}$ [kN]	γM,sp	N _{Rd,sp} [kN]	N _{Sd} [kN]			
29,283	1,500	25,568	22,073			

Ograja ŠRC Radenci 1

www.hilti.de

E-Mail:

PROGRIN d.o.o. Company: Specifier: Mitja ŽNIDARIČ Address: Lackova ulica 23 Phone I Fax:

mitja@progrin.si

Page: Project:

Fastening Point: Date:

9.2.2012

6 Shear load (ETAG, Annex C, Section 5.2.3)

	Load [kN]	Capacity [kN]	Utilisation _{βv} [%]	Status
Steel failure (without lever arm)*	0,525	44,000	2	OK
Steel failure (with lever arm)	N/A	N/A	N/A	N/A
Pryout failure**	2,100	79,403	3	OK
Concrete edge failure in direction	N/A	N/A	N/A	N/A

^{*} most unfavourable anchor **anchor group (relevant anchors)

6.1 Steel failure (without lever arm)

$V_{Rk,s}$ [kN]	γM,s	$V_{Rd,s}$ [kN]	V _{Sd} [kN]
55.000	1.250	44.000	0.525

6.2 Pryout failure

$A_{c,N}$ [mm ²]	$A_{c,N}^0$ [mm ²]	c _{cr,N} [mm]	s _{cr,N} [mm]	k-factor	
104308	60516	123	246	2,500	
e _{c1,V} [mm]	Ψec1,N	e _{c2,V} [mm]	Ψec2,N	$\psi_{s,N}$	Ψre,N
0	1,000	0	1,000	0,944	1,000
$N_{Rk,c}^0$ [kN]	γм,с,р	V _{Rd,c1} [kN]	V _{Sd} [kN]		
29,283	1,500	79,403	2,100		

7 Combined tension and shear loads (ETAG, Annex C, Section 5.2.4)

βN	$\beta_{\sf V}$	α	Utilisation $\beta_{N,V}$ [%]	Status	
0,863	0,026	1,000	75	OK	
$(\beta_N + \beta_V) / 1.2 \le 1$					

8 Displacements (highest loaded anchor)

Short term loading:

N_{Sk}	=	7,567 [kN]	δ_N	=	0,636 [mm]
$V_{\text{Sk}} \\$	=	0,389 [kN]	δ_{V}	=	0,031 [mm]
			δ_{NV}	=	0,637 [mm]
Long to	erm l	oading:			
N_{Sk}	=	7,567 [kN]	δ_{N}	=	0,763 [mm]
$V_{\text{Sk}} \\$	=	0,389 [kN]	δ_V	=	0,047 [mm]
			δ_{NV}	=	0,765 [mm]

Comments: Tension displacements are valid with half of the required installation torque moment for uncracked concrete! Shear displacements are valid without friction between the concrete and the anchor plate! The gap due to the drilled hole and clearance hole tolerances are not included in this calculation!

The acceptable anchor displacements depend on the fastened construction and must be defined by the designer!

9 Warnings

- · The anchor plate is assumed to be sufficiently stiff in order to be not deformed when subjected to the actions!
- · Checking the transfer of loads into the base material is required in accordance with ETAG 001, Annex C(2010)Section 7! The software considers that the grout is installed under the anchor plate without creating air voids and before application of the loads.
- · The design is only valid if the clearance hole in the fixture is not larger than the value given in Table 4.1 of ETAG 001, Annex C! For larger diameters of the clearance hole see Chapter 1.1. of ETAG 001, Annex C!

Fastening meets the design criteria!

www.hilti.de Profis Anchor 2.2.4

Company: PROGRIN d.o.o.
Specifier: Mitja ŽNIDARIČ
Address: Lackova ulica 23

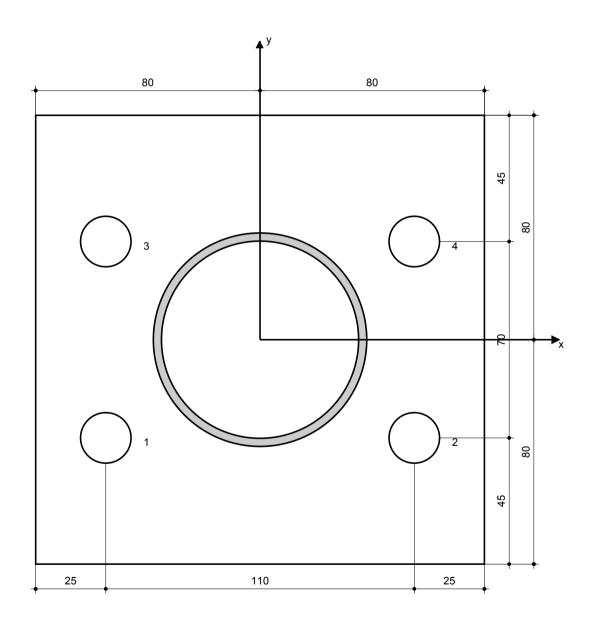
Address: Lackova uli
Phone I Fax:

E-Mail: mitja@progrin.si

Page: Project: Fastening Point:

Date:

6 Ograja ŠRC Radenci 1


9.2.2012

10 Installation data

Anchorplate, steel: -Profile: Pipe; 76 x 76 x 3 mm Hole diameter in the fixture: d_f = 18 mm

Plate thickness (input): 8 mm Recommended plate thickness: not calculated Anchor type and size: HST-HCR, M16 Installation torque: 0,110 kNm Hole diameter in the base material: 16 mm Hole depth in the base material: 115 mm Minimum thickness of the base material: 160 mm

Cleaning: Manual cleaning of the drilled hole according to instructions for use is required.

Coordinates Anchor [mm]

Anchor	X	у	C _{-x}	C+x	C _{-y}	C _{+y}
1	-55	-35	-	-	-	170
2	55	-35	-	-	-	170
3	-55	35	-	-	-	100
4	55	35	-	-	-	100

Profis Anchor 2.2.4 www.hilti.de

PROGRIN d.o.o. Company: Specifier: Mitja ŽNIDARIČ Address: Lackova ulica 23 Phone I Fax:

E-Mail: mitja@progrin.si Page: Project: Fastening Point:

Date:

Ograja ŠRC Radenci 1

9.2.2012

11 Remarks; Your Cooperation Duties

- · Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or programs, arising from a culpable breach of duty by you.